With all the talk about the ongoing advent of supercomputers and all they’re poised to do and having major ramifications for our day-to-day existences, there hasn’t been a whole lot of talk about the technological discoveries that are enabling these new mega processor computers to do what they do. Often times it’s not that they’re doing something which they weren’t capable of doing previously, and more that they’re doing them infinitely faster than they could before. Size is only part of it, as most of these new super computers are nowhere near the room-taking behemoths that were seen in the late ’70s and early 80s. Here at 4GoodHosting, we imagine there isn’t so much as one reliable Canadian web hosting provider who’s not keeping close tabs on these developments. Given the nature of the business we’re in, this stuff is especially relevant and we’re quite confident in guessing that it’s similarly must-read stuff for those of you with business interests that tied to what the World Wide Web is capable of as well. So today we’re going to look at how one particular component of computers that have been part of them since the beginning – magnets – are now having being supercharged in a very particular way. If this is something that interests you, read on. The Power in Disrupted Magnetism A necessary scientific preface here; magnets rapidly recover their magnetic properties following any sharp hit that disrupts their magnetism. Over recent years there’s been more research into this phenomenon, and it appears that was for good reason. Lasers were fired at slim magnets, and what happened after the laser beam hit it was that the magnetic spins of the material’s atoms started behaving more like a fluid, rather than a solid. As a result the magnetic properties formed ‘droplets’. The researchers then compared the magnetic activity to filling a jar with oil and water, and then shaking the container. How all of this is relevant is in how the spins of zapped magnets act like those in superfluids, with the magnets increase the expanse and concentration of properties due to the new molecular arrangement that is promoted by...
On This Page