

Tim Kadlec

implementing
responsive

design
Building sites for an anywhere, everywhere web

ImplementIng ResponsIve DesIgn:
BuIlDIng sItes foR an anywheRe,
eveRywheRe weB
Tim Kadlec

new RIDeRs
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.newriders.com
To report errors, please send a note to
errata@peachpit.com

New Riders is an imprint of Peachpit, a division of
Pearson Education.

Copyright © 2013 by Tim Kadlec

Project Editor: Michael J. Nolan
Development Editor: Margaret S. Anderson/
Stellarvisions
Technical Editor: Jason Grigsby
Production Editor: Rebecca Winter
Copyeditor: Gretchen Dykstra
Indexer: Joy Dean Lee
Proofreader: Rose Weisburd
Cover Designer: Aren Straiger
Interior Designer: Mimi Heft
Compositor: Danielle Foster

Find code and examples available at the companion
website, www.implementingresponsivedesign.com.

notIce of RIghts
All rights reserved. No part of this book may be
reproduced or transmitted in any form by any
means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior writ-
ten permission of the publisher. For information
on getting permission for reprints and excerpts,
contact permissions@peachpit.com.

notIce of lIaBIlIty
The information in this book is distributed on
an “As Is” basis without warranty. While every
precaution has been taken in the preparation of the
book, neither the author nor Peachpit shall have
any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused
directly or indirectly by the instructions contained
in this book or by the computer software and
hardware products described in it.

tRaDemaRks
Many of the designations used by manufacturers
and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in
this book, and Peachpit was aware of a trademark
claim, the designations appear as requested by the
owner of the trademark. All other product names
and services identified throughout this book are
used in editorial fashion only and for the benefit of
such companies with no intention of infringement
of the trademark. No such use, or the use of any
trade name, is intended to convey endorsement
or other affiliation with this book.

ISBN 13: 978-0-321-82168-3
ISBN 10: 0-321-82168-8

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.newriders.com
www.implementingresponsivedesign.com

For my wife and our
beautiful daughters.

acknowledgements
It is frequently said that writing a book is a lonely, solitary act. Perhaps that is
true in some cases, but it certainly wasn’t the case with this book. If this book is
any good, it’s because of all the hard work, patience and feedback provided by
everyone who helped along the way.

I owe a huge thank you to…

Michael Nolan, who invited me to write a book in the first place. Thanks for
being willing to gamble on me.

Margaret Anderson and Gretchen Dykstra for overlooking my horrible mis-
use of punctuation and for generally making it sound like I know how to write
much better than I do.

Danielle Foster for making the book look so fantastic, and putting up with a few
last minute adjustments. Also, to Rose Weisburd, Joy Dean Lee, Aren Straiger,
Mimi Heft, Rebecca Winter, Glenn Bisignani and the rest of the team at New
Riders for helping make this book come to life.

Ed Merritt, Brad Frost, Guy Podjarny, Henny Swan, Luke Wroblewski, Tom
Maslen and Erik Runyon for their incredible contributions. By being willing
to share their expertise and experiences, they’ve made this a much richer book
than it would have otherwise been.

Jason Grigsby for making sure I wasn’t making things up along the way and for
providing valuable (and frequently hilarious) feedback and encouragement
throughout. Not only is Jason one of the smartest people I know, but he’s also
one of the most helpful. I’m thankful to be able to call him a friend.

Aaron Gustafson for writing such a great foreword. I’ve been learning from
Aaron since I first started working on the web—to say I’m humbled and hon-
ored that he agreed to write the foreword is an understatement.

Stephen Hay, Stephanie Rieger, Bryan Rieger, Brad Frost, Derek Pennycuff,
Ethan Marcotte, Chris Robinson, Paul Thompson, Erik Wiedeman, Sara
Wachter-Boettcher, Lyza Danger Gardner, Kristofer Layon, Zoe Gillenwater,
Jeff Bruss, Bill Zoelle, James King, Michael Lehman, Mat Marquis, Nishant
Kothary, Andy Clarke, Ronan Cremin, Denise Jacobs and Cennydd Bowles for
the insights, feedback and encouragement they provided along the way. This
book owes a great deal to their collective awesomeness.

ImplemenTIng ResponsIve DesIgniv

To everyone whose conversations, both in person and online, inspired the
discussion that takes place in this book. This is an awesome community we
have going and I’m proud to be a part of it.

My mom and dad for their love and words of encouragement throughout.

My lovely daughters for reminding me it was ok to take a break every once in
awhile to play and for filling each day with laughs, kisses and hugs.

And my incredible wife, Kate. This book, and anything else I do that is any
good, is a direct result of her loving support and encouragement. There are no
words powerful enough to express how thankful I am for her.

vAcKnowleDgemenTs

foreword
By Aaron Gustafson
A few years back, photography legend Chase Jarvis smartly observed that
“the best camera is the one that’s with you.” It was a mildly shocking assertion
at the time, but it rings true: the perfect shot is rarely planned. Rather, it sneaks
up on you.

Perhaps the light is perfectly accentuating the fall foliage on your late afternoon
stroll. Or perhaps your infant daughter just pulled herself up on two legs for the
first time. In moments like these, it doesn’t matter that your Leica is sitting on
a shelf in the other room or that you left your Rebel in the car—what matters
is that you have a camera, however crude, in your pocket and can capture this
serendipitous and ephemeral moment.

Riffing on Jarvis’s idea, Stephanie Rieger has made the case that the best
browser is the one you have with you. After all, life is unpredictable.
Opportunities are fleeting. Inspiration strikes fast and hard.

Imagine yourself as a cancer researcher. You’ve been poring over a mountain
of research for months, looking for a way to increase interferon-gamma
production in an effort to boost the body’s natural ability to inhibit the
development of tumors. Your gut tells you that you’re close to an answer,
but it’s just out of reach. Then one morning, while washing the exhaustion
off in a nice hot shower, it hits you. Eureka! You think you’ve got it—you just
need to refer back to that paper you read last week.

Dripping, you leap from the tub and land on the bath mat. Without even grab-
bing a towel, you pluck your mobile off the counter and head to the journal’s site,
only to find yourself re-routed to a “lite” version of the website that shows you
only general information about the publication and prompts you to subscribe.

Your fingers leave wet streaks across the screen as you frantically scroll down
the page to find the inevitable link to “View Full Site” and click it. As the screen
loads, you find yourself hovering 30,000 feet above a patchwork quilt of a
homepage that could only have been designed by committee.

ImplemenTIng ResponsIve DesIgnvi

Several minutes of pinching, zooming, and typing later, you finally find the
article, only to discover it’s a PDF and nearly impossible to read on your tiny
screen. Dejected, you put down the phone and sulk back into the shower,
hoping it will wash away your disappointment.

Sadly, browsing the web on mobile is all too often a frustrating (and occasion-
ally dehumanizing) endeavor. But it doesn’t have to be.

In the pages of this very book, my friend Tim clearly outlines the steps you can
(and indeed should) take to ensure that the sites you help create offer each user
a fantastic experience, tailored to the capabilities of her device and respectful
of her time, patience, and data limits. Don’t let his small town charm fool you:
Tim knows this stuff inside and out. I learned a ton from this book and I know
you will too.

Aaron Gustafson is the author Adaptive Web Design: Crafting Rich Experiences with Progressive
Enhancement (Easy Readers, 2011)

FoRewoRD vii

This page intentionally left blank

contributions
The discussion around responsive design moves fast. Very fast. This book is
intended to be a synthesis of the incredible discussion that is taking place in
our community about this topic. To that end, I asked several people if they
would be willing to contribute short pieces based on their recent projects and
research.

Here are the contributions you’ll find, in order of their appearance in the book:

•	 Vertical Media Queries, by Ed Merritt, page 70

•	 Performance Implications of Responsive Design, by Guy Podjarny,
page 102

•	 Small Phone, Big Expectations, by Tom Maslen, page 136

•	 Responsive Design and Accessibility, by Henny Swan, page 141

•	 Selling Responsive Design, by Brad Frost, page 159

•	 RESS in the Wild, by Erik Runyon, page 210

•	 Beyond Layout, by Luke Wroblewski, page 242

Each of the seven contributors featured are experimenting with the cutting
edge of responsive design. They’re implementing the techniques discussed
in this book, and pushing the discussion forward. I’m incredibly honored to
be able to include their contributions—contributions based on hard-earned
experience—in this book.

conTRIBuTIons ix

contents

Chapter 1: the anywheRe, eveRywheRe weB 1

Where we went wrong . 3

The devices are coming, the devices are coming . 4
Display size . 6
Network speeds . 6
Standards support . 7
Input method . 7
Context . 8

Separate sites . 9
Divergence . 10

Becoming responsive . 11
Progressive enhancement . 14

Why another book on responsive design? . 16

What’s covered? . 17

Who is this book for? . 18

Code examples . 19

The companion site . 19

Chapter 2: fluID layouts 21

Layout options . 23
Fixed-width . 23
Fluid layouts . 25
Elastic layouts . 26
Hybrid layouts . 26
Which approach is the most responsive? . 27

Sizing fonts . 28
Pixels . 28
Ems . 29
Percentages . 31
Bonus round: rems . 32
Which approach is the most responsive? . 33
Converting from pixels . 34

ImplemenTIng ResponsIve DesIgnx

Grid layouts . 36
Content-out . 37
Setting the grid . 38

Mixing fixed and fluid widths . 44
Table layouts—the right way . 44

Wrapping it up . 50

Chapter 3: meDIa QueRIes 53

Viewports . 57
A pixel is a pixel, unless it isn’t . 58
Viewport tag and properties . 59

Media query structure . 65
Media types . 65
Media expressions . 67
Logical keywords . 67
Rules . 72

Embedded versus external . 73

Media query order . 74
Desktop down . 74
Mobile up . 75

Create your core experience . 76

Determining breakpoints . 78
Follow the content . 79
Enhancing for larger screens . 83
Using ems for more flexible media queries . 85

Navigation . 87
Toggling . 88

Supporting Internet Explorer . 92

Wrapping it up . 93

Chapter 4: ResponsIve meDIa 95

What’s the problem? . 96
Performance . 97

Selectively serving images to mobile . 99
JavaScript .100

conTenTs xi

Introducing matchMedia .104

Responsive image strategies . 105
Fighting the browser .105
Resignation .106
Going to the server .106

Responsive image options . 106
Sencha.io Src .106
Adaptive Images .107
Wait, what’s the answer here? .111

Background images . 111
While we’re at it .113

High-resolution displays . 115
SVG .116

Other fixed-width assets . 118
Video .118
Advertising .122

Wrapping it up . 125

Chapter 5: plannIng 127

Choosing to be responsive . 128

Considerations . 129
Performance .129
Context .130
Content negotiation .130
Time investment .130
Support .131
Advertising .132
Conclusion .132

Consider your analytics . 133
Skewed site analytics .134
Which stats matter .135
Skewed market share statistics .139

Consider your content . 139
Content audit .140
Page tables .143

ImplemenTIng ResponsIve DesIgnxii

Consider where you’re going . 144
Optimized for some, accessible to many .144

Consider the cross-device experience . 145

Prepare your test bed . 147
Actual devices .148
Emulators .150
Third-party services .152

Wrapping it up . 152

Chapter 6: DesIgn woRkflow 153

Your mileage may vary . 154
An interactive medium .155
Collaboration .155
Thinking in systems .160

Thinking mobile first . 160
Mobile is exploding .161
Mobile forces you to focus .162
Mobile extends your capabilities .164

The tools . 165
Wireframes .165
Mock-ups .168
Style guides .173

Wrapping it up . 178

Chapter 7: ResponsIve content 179

Starting with the content . 180

Content types . 181
Purpose .182
Creation. .182
Structure .182

What content to display, and when . 184
Removing content .184
Enhancing content .186

When should content order change? . 191
Structure, again .192

conTenTs xiii

Where we need to go . 194
Code soup .194
Baby steps .195
Building an API .196

Wrapping it up . 197

Chapter 8: Ress 199

User agent detection . 201
Anatomy of a user agent string .202
What can you do with user agent detection? .203

Feature detection . 204
Modernizr .204
Going to the server .205

Combining user agent detection and feature detection 207

RESS: The best of both worlds . 208

Troubled waters . 209

Installing WURFL . 213
Configuration .214

Detecting capabilities . 216
Making calls .221
Optimizing for touch .223

Wrapping it up . 226

Chapter 9: ResponsIve expeRIences 227

A system of sensors . 228

Network . 230
What can we do? .231

Context . 234
Classifying context .236
Observe and research .237

Capabilities . 238
HTML5 input types .238
APIs .241

Wrapping it up . 253

ImplemenTIng ResponsIve DesIgnxiv

Chapter 10: lookIng foRwaRD 255

Photo Credits . 259

Index . 260

About the Technical Editor . 271

About the Author . 271

conTenTs xv

This page intentionally left blank

Chapter 4

Responsive
Media

Look! We’ve figured it seventeen different ways,
and every time we figured it, it was no good,

because no matter how we figured it, somebody
don’t like the way we figured it.
—Buddy haCkett as Benjy Benjamin in

it’s a mad mad mad mad WorLd

When it comes to rich experiences online, we have a love/hate relationship.
On one hand, beautiful images and interesting videos help to provide a deeper,
more pleasant experience. On the other hand, including many images and
videos on a page results in a slow loading time, which can be very frustrating.
It takes careful consideration and planning to give our users the best of both
worlds: a beautiful experience that loads as quickly as possible.

Using the methods outlined in the first three chapters, we’ve built ourselves
a responsive site. It looks good on desktops, on tablet devices, and on smart-
phones. Users can resize the browser window to their hearts’ content, and the
layout will adjust accordingly. If delivering a responsive approach were this easy,
this book would be short indeed. There’s still plenty of room to tidy things up.
The images, in particular, are an issue.

In this chapter, we’ll discuss:

•	 Why performance matters

•	 How to conditionally load images

•	 What responsive image solutions are available, and their limitations

•	 How to swap out background images without downloading multiple
images

•	 How to conditionally load web fonts

•	 What’s ahead for responsive images

•	 How to make embedded video scale while maintaining its aspect ratio

•	 What to do with responsive advertising

What’s the problem?
Once we hit the final breakpoint (1300px), the images associated with the

“More in Football” section look a little worse for wear. Other than that, the im-
ages appear sharp and crisp.

We could probably improve the lead-in photograph for small screens. If the
small version of the image were more tightly cropped, the image would main-
tain its initial impact, even when scaled down on the small screen. As it is, the
flag and foot start to get lost at such a small size (Figure 4.1).

impLementing responsive design96

The main problem though is not in how the images look, but in how much they
weigh, how much demand they place on performance. Currently, the same im-
ages are being loaded regardless of the device in use. That means, for example,
the 624px lead-in image is being downloaded even on small screens where a
350px image is all that’s needed. The page performance is suffering, and that’s
a big deal to people visiting the site.

Performance
Unfortunately, performance is treated as an afterthought on many projects.
A quick look at the data reveals that it should be anything but.

Most of us working with the Web have faster connections than the average Inter-
net user. As a result, we experience the Web differently. Our users, however, are
keenly aware of how painful it is to use a poorly performing site.

In 2009, the major shopping comparison site Shopzilla improved its page load
time from 4 to 6 seconds to 1.5 seconds. The results were stunning. The site’s
conversion rate increased by 7 to 12 percent and page views jumped a whop-
ping 25 percent.1

1 “Shopzilla Site Redesign–We get what we measure” at www.scribd.com/doc/16877317/
Shopzillas-Site-Redo-You-Get-What-You-Measure

Figure 4.1 On small-screens,
the flag and foot in the
main image start to lose
their impact.

Chapter 4 • responsive Media 97

www.scribd.com/doc/16877317/Shopzillas-Site-Redo-You-Get-What-You-Measure
www.scribd.com/doc/16877317/Shopzillas-Site-Redo-You-Get-What-You-Measure

Mozilla found similar results when it trimmed page load time by 2.2 seconds:
download conversions went up by 15.4 percent, which translated into an esti-
mated 10.28 million additional downloads of Firefox per year!2

The situation is much more dire for mobile phones. Networks are slower, hard-
ware is less capable, and you have to deal with the messy world of data limita-
tions and transcoding methods. In spite of all this, user expectations remain the
same. In fact, 71 percent of mobile users expect sites to load on their phones as
quickly as or faster than on their home computers.3

This is bad news for our site as it currently stands. Both the logo and article
lead-in photo are very large. The article lead-in photo is 624px wide and weighs
around 50KB. The small-screen layout could get away with using a much
smaller image (somewhere around 300px), but we’re still passing along the
large desktop image instead of something more appropriate. Removing the
amount of data sent down the pipe is an important consideration, and one we
can’t afford to ignore.

A quick assessment of the page reveals the following images that could be
optimized:

•	 The images for the “More in Football” section. Each of these is only
300px, but they’re really not needed on the small screen. In fact, they take
up a lot of screen real estate and look out of proportion with the content
(Figure 4.2). On the small screen, users have a better experience if only
the headlines are displayed—not the images.

•	 The article lead-in image. The lead-in image is a whopping 624px and
weighs in at just under 50KB. On small screens, an image half the size
would work just as well. In addition, if the small-screen version of the image
was more tightly cropped, the visual focus on the flag would be stronger.

•	 The logo. The logo weighs in at 10KB, so it’s much lighter than the lead-in
article. It is, again, about twice as big as it needs to be.

2 “Firefox & Page Load Speed–Part II” at http://blog.mozilla.org/metrics/2010/04/05/
firefox-page-load-speed-–-part-ii/

3 “What Users Want from Mobile” at www.gomez.com/resources/whitepapers/
survey-report-what-users-want-from-mobile/

impLementing responsive design98

http://blog.mozilla.org/metrics/2010/04/05/firefox-page-load-speed-%E2%80%93-part-ii/
http://blog.mozilla.org/metrics/2010/04/05/firefox-page-load-speed-%E2%80%93-part-ii/
www.gomez.com/resources/whitepapers/survey-report-what-users-want-from-mobile/
www.gomez.com/resources/whitepapers/survey-report-what-users-want-from-mobile/

selectively serving
images to mobile
Let’s start by removing the images in the “More in Football” section from the
core experience. It might be tempting to just use display:none and call it a day,
but that doesn’t fix the problem, it only hides it.

An image set to display:none will still be requested and downloaded by the
browser. So while the image won’t show up on the screen, the issue of the extra
request and weight is still there. Instead, as usual, the correct approach is to
start with mobile first and then progressively enhance the experience.

Begin by removing the images from the HTML entirely:
1.	 <ul class=”slats”>

2.	 	 <li class=”group”>

3.	 	 	

4.	 	 	 	 <h3>Kicker connects on record 13 field goals</h3>

5.	 	 	

6.	 	

Figure 4.2 The images
in the “More Football”
section take up a lot of
precious screen real estate
on small-screen devices.

Chapter 4 • responsive Media 99

7.	 	 <li class=”group”>

8.	 	 	

9.	 	 	 	 <h3>Your favorite team loses to that team no one likes</h3>

10.	 	 	

11.	 	

12.	 	 <li class=”group”>

13.	 	 	

14.	 	 	 	 <h3>The Scarecrows Win 42-0</h3>

15.	 	 	

16.	 	

17.	

Obviously, the images will not load with this HTML. On the small-screen
display, that’s the way it’ll stay. For the larger sizes, a little JavaScript will bring
the images back. Using the HTML5 data-* attributes as hooks, it’s easy to tell
the JavaScript which images to load:
1.	 <ul class=”slats”>

2.	 	 <li data-src=”images/ball.jpg” class=”group”>

3.	 	 	

4.	 	 	 	 <h3>Kicker connects on record 13 field goals</h3>

5.	 	 	

6.	 	

7.	 	 <li data-src=”images/goal_post.jpg” class=”group”>

8.	 	 	

9.	 	 	 	 <h3>Your favorite team loses to that team no one likes</h3>

10.	 	 	

11.	 	

12.	 	 <li data-src=”images/ball_field.jpg” class=”group”>

13.	 	 	

14.	 	 	 	 <h3>The Scarecrows Win 42-0</h3>

15.	 	 	

16.	 	

17.	

JavaScript
The first thing to add is a quick utility function to help select elements. It’s not
necessary, but it’s definitely useful to have around:
1.	 q : function(query) {

2.	 	 if (document.querySelectorAll) {

DD Custom data
attributes

Preceded by a
data- prefix, these at-
tributes store custom
data private to the
page, often for script-
ing purposes.

impLementing responsive design100

3.	 	 	 var res = document.querySelectorAll(query);

4.	 	 } else {

5.	 	 	 var d = document,

6.	 	 	 a = d.styleSheets[0] || d.createStyleSheet();

7.	 	 	 a.addRule(query,’f:b’);

8.	 	 	 for(var l=d.all,b=0,c=[],f=l.length;b<f;b++) {

9.	 	 	 	 l[b].currentStyle.f && c.push(l[b]);

10.	 	 	 	 a.removeRule(0);

11.	 	 	 	 var res = c;

12.	 	 	 }

13.	 	 	 return res;

14.	 	 }

15.	 }

If you’re unfamiliar with native JavaScript, that might look a bit messy. That’s
OK. All the function does is take a selector, and return the elements that match
it. If you can grasp the code, that’s great. If not, as long as you understand what
it accomplishes, that’s enough for our purposes.

Armed with that function, the part that actually loads the images is pretty
straightforward:
1.	 //load in the images

2.		 var lazy = Utils.q(‘[data-src]’);

3.		 for (var i = 0; i < lazy.length; i++) {

4.	 	 var source = lazy[i].getAttribute(‘data-src’);

5.	 	 //create the image

6.	 	 var img = new Image();

7.	 	 img.src = source;

8.	 	 //insert it inside of the link

9.	 	 lazy[i].insertBefore(img, lazy[i].firstChild);

10.	 };

Line 2 grabs any elements with a data-src attribute applied. Then, in line 3 the
script loops through those elements. In lines 4–7, the script creates a new im-
age for each element using the value of the data-src attribute. The script then
inserts the new image (line 9) as the first element within the link.

With this JavaScript applied, the images aren’t requested right away. Instead,
they’re loaded after the page has finished loading, which is what we want. Now,
we just have to tell the script not to load for small screens.

Chapter 4 • responsive Media 101

Guy Podjarny
peRFoRMance iMplications oF Responsive design

Guy Podjarny, or Guypo for short, is a web performance researcher and
evangelist, constantly chasing the elusive instant web. He focuses heavily on
mobile web performance, and regularly digs into the guts of mobile brows-
ers. He is also the author of Mobitest, a free mobile measurement tool,
and contributes to various open source tools. Guypo was previously the
co-founder and CTO of Blaze.io, later acquired by Akamai, where he now
works as a Chief Product Architect.

Responsive Web Design (RWD) tackles
many problems, and it’s easy to get lost in
questions around how maintainable, future-
friendly, or cool your responsive website will
be. In the midst of all of these, it’s important
to not lose sight of how fast will it be. Perfor-
mance is a critical component in your user’s
experience, and many case studies demon-
strate how it affects your users’ satisfaction
and your bottom line.

Today, smartphone browsers are often redi-
rected to dedicated mobile websites, known
as mdot sites, which tend to be significantly
lighter in content and visuals than their
desktop counterparts. This translates to hav-
ing fewer images, scripts and stylesheets to
download, which helps make those websites
faster. The equation is simple—downloading
fewer bytes with fewer requests is faster than
having more of both.

Responsive websites, however, don’t follow
this pattern. I recently ran a performance test
on 347 responsive websites (All the websites
listed on http://mediaqueri.es/ in March,
2012). I loaded the homepage of each in a
Google Chrome browser window resized to
4 different sizes, ranging from 320x480 to
1600x1200. Each page was loaded multiple

times using www.webpagetest.org, a web
performance measurement tool.

The results were depressing. Despite chang-
ing their look across window sizes, the weight
and load time of the website hardly changed.
86% of the websites weighed roughly the
same when loaded in the smallest window,
compared to the largest one. In other words,
despite the fact the websites look like an mdot
site when loaded on a small screen, they are
still downloading the full website content,
and are thus painfully slow.

While every website is different, three causes
for this over-downloading repeated across
practically all websites.

•	 Download and Hide

•	 Download and Shrink

•	 Excess DOM

download and Hide is by far the top reason for
this bloat. Responsive websites usually return
a single HTML to any client. Even on “Mobile
First” websites, this HTML contains or refer-
ences all that’s needed to provide the richest
experience on the biggest display. On a smaller
screen, sections that shouldn’t be shown are
hidden using the display:none style rule.

impLementing responsive design102

www.webpagetest.org
http://mediaqueri.es/

Unfortunately, display:none doesn’t help per-
formance one bit, and resources referenced
in a hidden part of the page are downloaded
just the same. Scripts within hidden sections
still run. DOM elements are still created. As a
result, even when hiding the majority of your
page’s content, the browser will still evaluate
the page in resources and download all the
resources it can find.

download and shrink is a conceptually
similar problem. RWD uses fluid images to
better match the different screen sizes. While
visually appealing, this means the desktop-
grade image is downloaded every time, even
when loaded on a much smaller screen. Users
cannot appreciate the high quality image on
the smaller screen, making the excess bytes a
complete waste.

excess doM is the third episode of the same
story. RWD websites return the same HTML
to all clients. Browsers parse and process hid-
den areas of the DOM despite being hidden.
As a result, loading a responsive website on
a small screen results in a DOM that is far
more complicated than what the user experi-
ence demands. A more complicated DOM
leads to higher memory consumption, expen-
sive reflows, and a generally slower website.

These problems are not simple to solve, since
they’re the result of how RWD and brows-
ers work today. However, there are a few
practices that can help you keep your perfor-
mance under control:

•	 Use Responsive Images

•	 Build Mobile First

•	 Measure

Responsive Images are already discussed in
this book at length, and help address the
“Download and Shrink” problem. Since

images are the bulk of the bytes on each
page, this is the easiest way to significantly
reduce your page’s weight. Note that CSS
images should be responsive as well, and can
be replaced using media queries.

Build Mobile First means going a step beyond
designing a Mobile First website, and actually
coding a dedicated website for the lowest reso-
lution you care about. Once implemented, this
website should perform as well as other mdot
sites, and be reasonably lightweight. From
that point on, only enhance the page using
JavaScript or CSS, to avoid over-downloading.
Clients that have no JavaScript support will
get your basic experience, which should be
good enough for these edge cases. Note that
enhancing with JavaScript and keeping perfor-
mance high isn’t simple, and best practices for
it are not fully established yet—which brings
me to my next point.

Measure. Treat performance as a core part of
your website’s quality, and don’t ship without
understanding and accepting its performance.
If you know your mobile website weighs over
1 MB, you’re likely to delay its launch until
you do something about it. Measurement
tools vary, but I would recommend Mobit-
est for testing on real devices (http://akamai.
com/mobitest) and WebPageTest for testing
on desktop browsers (www.webpagetest.
org), resized them using the setviewportsize
command.

In summary, Responsive Web Design is a
powerful and forward thinking technique, but
it also carries with it significant performance
implications. Make sure you understand
these challenges and design to avoid them,
so that users won’t abandon your website
before they got to experience your amazing
visuals and content.

Chapter 4 • responsive Media 103

www.webpagetest.org
www.webpagetest.org
http://akamai.com/mobitest
http://akamai.com/mobitest

Introducing matchMedia
In Chapter 3, “Media Queries,” the script we built to toggle the display of the
navigation on small screens checked to see if the list items in the navigation
were floated. If they were, the collapse feature was created. This time, let’s use
the handy matchMedia() method.

The matchMedia() method is a native JavaScript method that lets you pass in
a CSS media query and receive information about whether or not the media
query is a match.

To be specific, the function returns a MediaQueryList object. That object has
two properties: matches and media. The matches property returns either true (if
the media query matches) or false (if it doesn’t). The media property returns
the media query you just passed in. For example, the media property for window.
matchMedia(“(min-width: 200px)”) would return “(min-width: 200px)”.

matchMedia() is supported natively by Chrome, Safari 5.1+, Firefox 9, Android
3+, and iOS5+. Paul Irish has created a handy polyfill for browsers that don’t
support the method.

With the matchMedia polyfill in place, telling the browser to insert only the
images above the first breakpoint simply requires wrapping the code inside
a matchMedia check:
1.	 if (window.matchMedia(“(min-width: 37.5em)”).matches) {

2.	 	 //load in the images

3.	 	 var lazy = Utils.q(‘[data-src]’);

4.	 	 for (var i = 0; i < lazy.length; i++) {

5.	 	 	 var source = lazy[i].getAttribute(‘data-src’);

6.	 	 	 //create the image

7.	 	 	 var img = new Image();

8.	 	 	 img.src = source;

9.	 	 	 //insert it inside of the link

10.	 	 	 lazy[i].insertBefore(img, lazy[i].firstChild);

11.	 	 };

12.	 }

Now when the page is loaded on a phone, or the screen is sized down, the
images are no longer requested (Figure 4.3). This is a big win for performance
on small screens. There are now three fewer HTTP requests, and the size of
the page has been reduced by about 60KB (the size of those three images
combined). Best of all, the headlines are still there and the links are completely
functional. The experience doesn’t suffer at all.

DC Note
Irish’s polyfill is
available on GitHub
at https://github.
com/paulirish/
matchMedia.js or in
the example files on
the companion site
at http://www.
implementing
responsivedesign.com.

DD Polyfill
A snippet of code
that provides support
for a feature the
browser does not yet
support natively.

impLementing responsive design104

http://www.implementingresponsivedesign.com
http://www.implementingresponsivedesign.com
http://www.implementingresponsivedesign.com
https://github.com/paulirish/matchMedia.js
https://github.com/paulirish/matchMedia.js
https://github.com/paulirish/matchMedia.js

With those images out of the way, we can focus on the lead-in image and the
logo. We want those images, the logo in particular, to show up no matter the
resolution. So, instead of conditionally loading them, we’ll load them every
time, but sized appropriately. This is where things get hairy.

Responsive image strategies
They say there are only seven stories in the world, they just get told in different
ways. In the same way, there are currently only three strategies for handling
responsive images: fighting the browser, resignation, or going to the server.

Fighting the browser
Most front-end solutions attempt to fight the browser. They try their best to
switch which image is loaded before the browser can download the wrong one.

This is an increasingly difficult task. Browsers want pages to load quickly, so
they go to extreme lengths to download images as quickly as possible. Of
course, this is a good thing—you want your site to load as quickly as possible.
It’s really only annoying when you want to beat them to it.

Figure 4.3 On small
screens, the images in the

“More in Football” section
won’t be requested, greatly
improving the performance
of the page.

Chapter 4 • responsive Media 105

Resignation
A few strategies out there basically admit defeat to the browser. Typically the
approach is to load the small-screen image first, by default. Then, if necessary,
load the larger image for larger screens as well.

Obviously this is not ideal. Larger screen devices will be making two requests
where only one is needed. That’s something to avoid if possible. Performance
is important on large-screen devices, too.

Going to the server
Finally, a few methods use the server and some form of detection to determine
which image to load. This method doesn’t have to race the browser, because all
the logic is executed before the browser ever sees the HTML.

However, going to the server is also not particularly future friendly. Main-
taining information about every device that might request your content will
become increasingly difficult as they proliferate (thanks to the decrease in the
cost of manufacturing computing devices). Information about devices will also
be less reliable as more and more devices allow content to be viewed in differ-
ent ways: projections, embedded webviews, or on another screen entirely.

Responsive image options
There are limitations to every approach to responsive images currently available.
To illustrate this, let’s look at a couple different techniques for setting responsive
images, and evaluate whether they’re right for the Yet Another Sports Site page.

Sencha.io Src
Sencha.io Src is as close as you’re going to get to a plug-and-play solution for
responsive images. The service, originally created by James Pearce, takes an
image that you pass and returns it resized. To use it, you simply preface your
image source with the Sencha.io Src address like so:

http://src.sencha.io/http://mysite.com/images/football.jpg

impLementing responsive design106

http://src.sencha.io/http://mysite.com/images/football.jpg

Sencha.io Src uses the user agent string of the device making the request to figure
out what size the device is and then resizes your image accordingly. By default, it
resizes the image to 100% of the screen width (though it will never size up).

A great deal of customization is possible. For instance, if you want the service to
resize your image to a specific width, you can pass that along as another param-
eter. For example, the following line of code resizes the image to 320px wide:

http://src.sencha.io/320/http://mysite.com/images/football.jpg

Sencha.io Src is also smart enough to cache the requests, so the image isn’t
generated each and every time the page loads.

Unfortunately, this probably isn’t the best solution for Yet Another Sports Site.
Sizing the images to 100% of the screen size only helps on small screens. On
a large display, when the article spans two columns, the image remains its origi-
nal size because Sencha.io Src looks at the screen width, not the width of the
containing element. While it’s possible to tell Sencha.io Src to use that width,
it involves using the service’s experimental client-side measurements feature
and doing a bit of JavaScript hackery.

While the current version of the page doesn’t run into the issue, Sencha.io Src
is also limiting if you want to do more than just resize an image, for instance,
if you want to recrop the image. Perhaps the “More in Football” images could
become square thumbnails at some point. If they did, a simple resize wouldn’t
work. Some art direction capability is needed, and Sencha.io Src doesn’t allow
for that.

You might also be a bit uncomfortable using a third-party solution for this. If
the company changes its policy or goes out of business, you could very well be
out in the cold and looking for another solution entirely.

Adaptive Images
Another solution bordering on plug-and-play is Adaptive Images, created
by Matt Wilcox. It determines the screen size and then creates, and caches,
a resized version of your image.

It’s an excellent solution for an existing site where you may not have time to
restructure your markup or code. Getting it up and running is a simple three-
step process:

DC Note
You can find detailed
documentation for
Sencha.io Src at
http://docs.sencha.
io/0.3.3/index.
html#!/guide/src

DC Note
The code for Adap-
tive Images can be
found at http://
adaptive-images.com

Chapter 4 • responsive Media 107

http://src.sencha.io/320/http://mysite.com/images/football.jpg
http://docs.sencha.io/0.3.3/index.html#!/guide/src
http://docs.sencha.io/0.3.3/index.html#!/guide/src
http://docs.sencha.io/0.3.3/index.html#!/guide/src
http://adaptive-images.com
http://adaptive-images.com

1. Place the .htaccess and adaptive-images.php files that are included in the
download into your root folder.

2. Create an ai-cache folder and grant it write permissions.

3. Add the following line of JavaScript to the head of your document:
<script>document.cookie=’resolution=’+Math.max(screen.width,

screen.height)+’; path=/’;</script>

That line grabs the resolution of the screen and stores it in a cookie for future
reference.

While there are many options you can configure in the adaptive-images.php,
much of the time you’ll be able to get away with just setting the $resolutions
variable to include your breakpoints:

$resolutions = array(860, 600, 320); // the resolution breakpoints to

use (screen widths, in pixels)

If you’re paying close attention, you’ll notice that the breakpoints are slightly
off from the CSS of the Yet Another Sports Site page. There’s no 320px break-
point in the CSS, and the highest two breakpoints, 1300px and 940px, are not
included in the $resolutions array. This is because of the way the script works.

The smallest breakpoint, in this case 320px, is the size at which the image will
be created for any screen that does not exceed that width. So, for example, a
300px screen will receive a 320px image because it’s the lowest size defined in
the $resolutions array. A 321px screen, since it exceeds the 320px value de-
fined in the array, will receive the next size image—in this case, 600px. If we left
600px as our first breakpoint, any device with a screen size below 600px would
have received a 600px image.

We also don’t need the two highest breakpoints, because again, the script will
try to resize an image to the breakpoint size. It will never size the image larger
than it already is, so really, anything above 624px (the physical dimension of
the image) doesn’t matter much—the script won’t resize the image.

Once created, the images are stored in the ai-cache folder (you can change the
name) so they don’t have to be regenerated. There’s also a configuration setting
to control how long the browser should cache the image.

The installation is simple, and again, it’s a great solution for existing sites that
need to get something in place, but it’s not without its faults. Unfortunately, no
opportunity for art direction exists since the images are dynamically resized.

impLementing responsive design108

Art direction and responsive images
Much of the conversation about responsive images revolves around file
size. While that’s an important consideration, it isn’t the only one. Some-
times, resizing an image for smaller screens can reduce its impact.

Consider this example photo of a football helmet.

The photo looks nice at its original size,
and is well balanced. If we make the image
smaller, suddenly the helmet is almost too
small to be recognized.

This is an instance where art direction is nec-
essary. Resizing the image alone causes it to
lose its impact and recognizability. By tight-
ening the crop instead, we keep the focus on
the helmet despite the small image size.

Chapter 4 • responsive Media 109

The script also doesn’t help you if the image is actually smaller at a large resolu-
tion. For the Yet Another Sports Site page, that’s a problem. When the screen is
above 1300px, the article goes to two columns and the image is placed inside
one of them, reducing its size. Using the Adaptive Images script, the largest ver-
sion of the image will still be downloaded.

The other concern with this approach is that the URL stays the same, regardless
of the size of the image being requested. This could cause issues with Content
Delivery Networks (CDNs). The first time a URL is requested, the CDN may
cache it to improve the speed the next time that same resource is requested. If
multiple requests for the same URL are made via the same CDN, the CDN may
serve up the cached image, which may not be the size you actually want served.

What’s ahead for responsive images?
Just to be clear: relying on a combination of server-side detection and
JavaScript cookies is entirely a stopgap method. If there were something
more permanent out there, I’d advocate it. Unfortunately every respon-
sive image method available today is essentially a hack, a temporary
solution to cover up the problem.

More long-term solutions, such as a new element, new attribute or new
image format, have been discussed. In fact, if you’re feeling a bit frisky,
there’s a fully functioning polyfill for one such as-yet non-existent ele-
ment available on GitHub at https://github.com/scottjehl/picturefill.
Unfortunately, the problem is far from being solved because the answer
isn’t as simple as “what is easy for developers to use.”

In a blog post discussing the conflict of opinions between two popular
proposed solutions, Jason Grigsby hit the problem on the head.4 To
improve performance, browsers want to be able to download images
as soon as possible, before the layout of the page is known. Developers,
on the other hand, rely on knowledge about the page layout to be able
to determine which image to load. It’s a difficult nut to crack.

I am confident that with time, a proper solution will emerge. In the
meantime, as already mentioned, the best approach will vary depending
on the project at hand.

4 Read more about the real conflict behind <picture> and @srcset at http://blog.cloudfour.com/
the-real-conflict-behind-picture-and-srcset/

DD Content Delivery
Network

A collection of servers
deployed in multiple
locations to help de-
liver content more
efficiently to users.

impLementing responsive design110

https://github.com/scottjehl/picturefill
http://blog.cloudfour.com/the-real-conflict-behind-picture-and-srcset/
http://blog.cloudfour.com/the-real-conflict-behind-picture-and-srcset/

Wait, what’s the answer here?
Ultimately, no definitive solution currently exists for responsive images. Each
method has advantages and disadvantages. The approach you take will depend
on the project you’re working on.

Of the two approaches we’ve discussed, settling on Adaptive Images is probably
the best route to take since it doesn’t require any reliance on a third-party source.

Background images
The folks over at Yet Another Sports Site are pretty happy with the site, but
they’d like to see a visual indication in the header that helps visitors identify
which section of the site they’re in.

After 30 seconds of exhausting Photoshop work, we provide them with two
silhouettes of footballs as shown in Figure 4.4.

They’re happy with the way this looks on the large screen, but on anything
smaller than the 53.75em breakpoint, where the logo starts to overlap, they’d
like the background image to go away.

This is another area where building mobile up is helpful. Let’s consider what
would happen if we built the site desktop down using media queries.

Your base styles would be the place to include the background image and you
would have to override it in a later media query. It would looked something like this:
1.	 /* base styles */

2.	 	header[role=”banner”] .inner{

3.	 	 background: url(‘../images/football_bg.png’) bottom right

no-repeat;

4.	 	}

5.		

6.		 @media all and (max-width: 53.75em) {

7.	 	 header[role=”banner”] .inner {

8.	 	 	 background-image: none;

9.	 	 }

10.	 }

Figure 4.4
The header sporting
its spiffy new back-
ground image.

Chapter 4 • responsive Media 111

On paper, this seems fine. But in reality, for many browsers, this would result in
downloading the image even on a small screen device where it wouldn’t be used.
Most notable among these is the default browser on Android 2.x. Remember,
while version 4 is current at the time of this writing, about 95 percent of Android
devices are running an earlier version. This means that almost all Android traffic
on mobile devices would be downloading the image without needing it.

To avoid this penalty, a better method would be to declare the background
image within a media query like so:
1.	 /* base styles */

2.		 @media	all	and	(min-width:	53.75em)	{

3.	 	 header[role=”banner”] .inner{

4.	 	 	 background: url(‘../images/football_bg.png’) bottom right

 no-repeat;

5.	 	 }

6.	 	}

7.	

8.	 	@media all and (max-width: 53.75em) {

9.	 	 header[role=”banner”] .inner {

10.	 	 	 background-image: none;

11.	 	 }

12.	 }

Doing that would be enough to get Android to play along nicely.

Since we built the page mobile up, the whole process is much simpler. The base
experience doesn’t need the background image, so we can introduce it in a
media query later on:
1.	 /* base styles */

2.	 	@media all and (min-width: 53.75em) {

3.	 	 header[role=banner] .inner{

4.	 	 	 background: url(‘../images/football_bg.png’) bottom right

no-repeat;

5.	 	 }

6.	 }

Using this approach means that only browsers that need to display the back-
ground image will request it—performance problem solved!

DC Note
If you want the
juicy details about a
variety of methods
for replacing and
hiding background
images, take a look
at http://timkadlec.
com/2012/04/
media-query-asset-
downloading-results/
to see the tables of
results from tests I’ve
been running.

impLementing responsive design112

http://timkadlec.com/2012/04/media-query-assetdownloading-results/
http://timkadlec.com/2012/04/media-query-assetdownloading-results/
http://timkadlec.com/2012/04/media-query-assetdownloading-results/
http://timkadlec.com/2012/04/media-query-assetdownloading-results/

Of course, once again, building mobile up means that Internet Explorer 8 and
below won’t see this background image by default. However, we already have
an IE-specific stylesheet in place thanks to conditional comments. We can just
add this declaration in there and we’re good to go.

While we’re at it
Currently, we’re using web fonts to load the ChunkFive font that is being used
in the header elements. The style declaration looks like this:
1.	 @font-face {

2.	 	 font-family: ‘ChunkFiveRegular’;

3.	 	 src: url(‘Chunkfive-webfont.eot’);

4.	 	 src: url(‘Chunkfive-webfont.eot?#iefix’) format

 (‘embedded-opentype’),

5.	 	 	 url(‘Chunkfive-webfont.woff’) format(‘woff’),

6.	 	 	 url(‘Chunkfive-webfont.ttf’) format(‘truetype’),

7.	 	 	 url(‘Chunkfive-webfont.svg#ChunkFiveRegular’) format(‘svg’);

8.	 	 font-weight: normal;

9.	 	 font-style: normal;

10.	 }

That declaration works nicely. The browser grabs the file it needs and renders
the font. The sizes of the files aren’t even that bad. There’s a downside though.
Currently, WebKit-based browsers won’t display text styled with a web font
until that web font has been downloaded. This means that if a user comes along
on an Android, BlackBerry, or iPhone over a slow connection (or uses a laptop
through a tethered connection for that matter), the header elements will take
some time to actually display. This is a confusing experience for users and
should be avoided.

We can’t determine bandwidth (yet—check out Chapter 9, “Responsive Expe-
riences,” for a preview of what’s to come), but we know the likelihood of a slow
network is highest with a mobile device. It would be nice to save the user the
trouble and load the fonts for larger screens only.

The approach we used to conditionally load background images works for fonts
as well. So, let’s move the @font-face declaration inside of a media query. Doing
so ensures that devices below that breakpoint will not attempt to grab the fonts:

DC Note
Why all the different
font files? You have
browser differences
to thank for that.
While browser sup-
port is pretty good,
they can’t seem to
agree on one format.

Chapter 4 • responsive Media 113

1.	 @media	all	and	(min-width:	37.5em)	{

2.	 	 ...

3.	 	 @font-face {

4.	 	 	 font-family: ‘ChunkFiveRegular’;

5.	 	 	 src: url(‘Chunkfive-webfont.eot’);

6.	 	 	 src: url(‘Chunkfive-webfont.eot?#iefix’)

 format(‘embedded-opentype’),

7.	 	 	 					url(‘Chunkfive-webfont.woff’) format(‘woff’),

8.	 	 	 	 url(‘Chunkfive-webfont.ttf’) format(‘truetype’),

9.	 	 	 	 url(‘Chunkfive-webfont.svg#ChunkFiveRegular’)

format(‘svg’);

10.	 	 	 font-weight: normal;

11.	 	 	 font-style: normal;

12.	 	 }

13.	 }

With that small tweak in place, the web font will load only on screens larger
than 37.5em (~600px). While it’s still possible for a user with a slow connec-
tion to get stuck with the WebKit delayed loading bug, by removing the fonts
from small-screen displays we’ve also removed the most likely victim: people
using mobile devices (Figure 4.5).

Figure 4.5
Web fonts will
no longer be
loaded on small
screens to improve
performance.

impLementing responsive design114

High-resolution displays
Just in case you thought swapping images out based on screen size wasn’t dif-
ficult enough, it turns out there is at least one more situation that might require
different images: high-resolution displays. The problem really started with the
Retina display on the iPhone 4, but it’s been exacerbated by the iPad 3 and the
latest versions of the MacBook Pro both supporting a Retina display.

The Retina display sports a whopping 326ppi (pixels per inch) pixel density,
compared to 163ppi for the iPhone 3 display. This high density means that
images can appear to be incredibly detailed and sharp—if they’re optimized
for the display. If they’re not, they will appear grainy and blurry.

Creating images for high-resolution displays means creating larger images, which
in turn means larger file sizes. Therein lies the rub. You don’t want to pass these
larger images to screens that don’t need them. Currently, there isn’t a great way
to do that with content images: it’s the same sort of problem we discussed previ-
ously when trying to load images appropriate for different screen widths.

For CSS images, you can use the min-resolution media query for all browsers
except those running on WebKit. For WebKit-based browsers, you must use
the –webkit-min-device-pixel-ratio media query.

The –webkit-min-device-pixel-ratio media query takes a decimal value
representing the pixel ratio. To target the Retina display on the iPhone, iPad, or
new MacBook Pro you need a value of at least 2.

The min-resolution media query takes one of two values. The first is the screen
resolution in either dots per inch or dots per centimeter. Doing this requires a
little math, and some of the early implementations were inaccurate. As a result,
I recommend using the new dots per pixel (dppx) unit. Not only does it re-
move the need for any math (it lines up perfectly with the ratio value accepted
by the –webkit-min-device-pixel-ratio media query), but it also avoids the
older, incorrect implementations. Support for the dots per pixel unit is still a
little sketchy, but since displaying Retina-ready images is a nice enhancement
rather than an essential feature, I’m pretty comfortable using it.

DD Pixel density
The number of pixels
within a specified
space. For example,
326ppi means
there are 326 pixels
within every inch of
a display.

Chapter 4 • responsive Media 115

1.	 header[role=”banner”] .inner {

2.	 	 background: url(‘../images/football_bg_lowres.png’) bottom right

 no-repeat;

3.	 }

4.	 @media only screen and (-webkit-min-device-pixel-ratio: 2),

5.	 	 only screen and (min-resolution: 2dppx) {

6.	 	 	 header[role=”banner”] .inner {

7.	 	 	 	 background: url(‘../images/football_bg_highres.png’)

 bottom right no-repeat;

8.	 	 	 }

9.	 }

The above media query targets any device with a pixel ratio of at least 2. Lines
1–3 set the background image for low resolutions. Lines 4 and 5 target devices
with a pixel ratio of at least 2. If the pixel ratio is at least 2, then lines 8–10 apply
a higher-resolution image for the background.

SVG
One solution for both high-resolution displays and images that scale across
screen sizes is Scalable Vector Graphics (SVG). SVG images are vector images
whose behavior is defined in XML. This means they can scale well without
actually increasing file size. It also means they can be programmatically altered
and adjusted.

One great example of how SVG can improve an experience is the work Yiibu,
a mobile company in Edinburgh, did for the Royal Observatory at Greenwich.
The company was working on a project that involved a responsive site featuring
images of constellation patterns that needed to scale down. When using regular
images and scaling, the small-screen images lost much of their detail. Using
SVG and some smart scaling, Yiibu was able to adjust the images for small
screens so the detail was retained (Figure 4.6).

impLementing responsive design116

Figure 4.6 Simply resizing the image resulted in a large loss of detail
(top right). By using SVG and some smart scaling, adjustments
could be made ensuring that the level of detail could be retained,
especially keeping text legible (bottom right).

There are two real issues standing in the way of SVG: browser support and lack
of tools. As usual, Internet Explorer 8 and under don’t play along. More im-
portantly, neither does the default browser on Android 2.x—the most popular
version of that platform. Those browsers that do support SVG images vary in
their level, and quality, of support.

The most popular tools for image creation and manipulation, such as Photo-
shop, are not built with vector formats like SVG in mind. If you want to create
SVG images, you need to find another tool to do it in.

As tools and browsers start to catch up, SVG images may become a very com-
mon tool in a web developer’s toolbox.

Chapter 4 • responsive Media 117

other fixed-width assets
Images aren’t the only asset that present some problems for responsive sites.
Let’s look at two in particular: video and advertising.

Video
Embedding videos in a responsive site is, perhaps surprisingly, a little more
complicated than it first appears. If you’re using HTML5 video, it’s simple. You
can use the same max-width technique we discussed for making images fluid:
1.	 video{

2.	 	 max-width: 100%;

3.	 	 height: auto;

4.	 }

Most sites, however, pull their videos from a third party (YouTube or Vimeo,
for example) using an iFrame. If you apply the same trick, the width scales but
the height retains its original value, breaking the aspect ratio (Figure 4.7).

Figure 4.7 Unfor-
tunately, using
max-width: 100% and
height: auto on video
embeds will result in
the video breaking
the aspect ratio.

impLementing responsive design118

The trick is something Thierry Koblentz called “intrinsic ratios.”5 The basic idea
is that the box that contains the video should have the proper aspect ratio of
the video (4:3, 16:9, and so on). Then, the video needs to fit the dimensions of
the box. That way, when the width of the containing box changes, it maintains
the aspect ratio and forces the video to adjust with it.

The first thing to do is create a wrapping element:
1.	 <div class=”vid-wrapper”>

2.	 	 <iframe></iframe>

3.	 </div>

The wrapper serves as the containing box so it needs to maintain the proper
aspect ratio. In this situation, the aspect ratio is 16:9. The video itself is posi-
tioned absolutely, so the wrapper needs an adequate amount of padding ap-
plied to maintain the ratio. To maintain the 16:9 ratio, divide 9 by 16, which
gives you 56.25%.
1.	 .vid-wrapper{

2.	 	 width: 100%;

3.	 	 position: relative;

4.	 	 padding-bottom: 56.25%’;

5.	 	 height: 0;

6.		 }

7.		 .vid-wrapper iframe{

8.	 	 position: absolute;

9.	 	 top: 0;

10.	 	 left: 0;

11.	 	 width: 100%;

12.	 	 height: 100%;

13.	 }

The styles above also position the iFrame absolutely within the wrapper and
set the height and width to 100% so it stretches to fill (lines 11–12). The wrap-
per itself is set to 100% of the article’s width (line 2) so it adjusts as the screen
size adjusts.

With these styles in place, the video responds to different screen sizes while
maintaining its original aspect ratio.

5 “Creating Intrinsic Ratios for Video” at www.alistapart.com/articles/creating-intrinsic-ratios-for-video/

DC Note
If you prefer, there’s
a helpful jQuery
plug-in called FitVids
that automates the
process of making
videos respond. Visit
GitHub at https://
github.com/dava-
tron5000/FitVids.js
to download it.

Chapter 4 • responsive Media 119

www.alistapart.com/articles/creating-intrinsic-ratios-for-video/
https://github.com/davatron5000/FitVids.js
https://github.com/davatron5000/FitVids.js
https://github.com/davatron5000/FitVids.js

enhanCing the experienCe

As always, it’s worth taking a step back and considering how the experience can
be enhanced. At the moment, the video is being downloaded on all devices.
That might not be the best approach for the base experience. To speed up the
core experience, it would be nice to display only a link to the video. Then, for
larger screens, the video embed could be included.

To do this, start with a simple link:

Video highlights

You can also add a few simple styles to make sure the text link doesn’t look out
of place:
1.	 .vid{

2.	 	 display: block;

3.	 	 padding: .3em;

4.	 	 margin-bottom: 1em;

5.	 	 background: url(../images/video.png) 5px center no-repeat #e3e0d9;

6.	 	 padding-left: 35px;

7.	 	 border: 1px solid rgb(175,175,175);

8.	 	 color: #333;

9.	 }

There’s nothing too fancy going on here. We gave the link a little padding and
margin to set it apart from the rest of the content, and applied a background
with a video icon set to the left (Figure 4.8).

Now, with JavaScript, convert the link to the appropriate embed.

Figure 4.8 With
some styles in place,
the video link fits
nicely in with the rest
of the page.

impLementing responsive design120

Add the following function to the Utils object in yass.js:
1.	 getEmbed : function(url){

2.	 	 var output = ‘’;

3.	 	 var youtubeUrl = url.match(/watch\?v=([a-zA-Z0-9\-_]+)/);

4.	 	 var vimeoUrl = url.match(/^http:\/\/(www\.)?vimeo\.com\

 /(clip\:)?(\d+).*$/);

5.	 	 if(youtubeUrl){

6.	 	 	 output = ‘<div class=”vid-wrapper”><iframe src=”http://

 www.youtube.com/embed/’+youtubeUrl[1]+’?rel=0”

 frameborder=”0” allowfullscreen></iframe></div>’;

7.	 	 	 return output;

8.	 	 } else if(vimeoUrl){

9.	 	 	 output = ‘<div class=”vid-wrapper”><iframe src=”http://

 player.vimeo.com/video/’+vimeoUrl[3]+’” frameborder=”0”>

 </iframe></div>’;

10.	 	 	 return output;

11.	 	 }

12.	 }

Let’s walk through the function.

The function takes the URL of the video as its only parameter. It then deter-
mines if the URL is a YouTube video or a Vimeo video using regular expres-
sions (lines 4–5). Depending on the URL type, it creates the embed markup
including the containing element and returns it (lines 5–11).

Armed with the getEmbed function, it’s easy to convert the video link to an
embed. Throw the following JavaScript within the matchMedia(“(min-width:
37.5em)”) test:
1.	 //load in the video embed

2.	 var videoLink = document.getElementById(‘video’);

3.	 if (videoLink) {

4.	 	 var linkHref = videoLink.getAttribute(‘href’);

5.	 	 var result = Utils.getEmbed(linkHref);

6.	 	 var parent = videoLink.parentNode;

7.	 	 parent.innerHTML = result + videoLink.parentNode.innerHTML;

8.	 	 parent.removeChild(document.getElementById(‘video’));

9.	 }

Chapter 4 • responsive Media 121

The first two lines grab the link to the video and the link’s href. On line 5, the
link is passed to the getEmbed function we created. Once you have the result,
lines 6–8 insert it into the article and remove the text link (Figure 4.9).

Now the video embed is responsive, and is pulled in only when the screen size
is greater than 37.5em, ensuring that the base experience won’t need to make
the expensive HTTP requests to embed the video.

Advertising
Another fixed asset that presents some difficulties is advertising.

Like it or not, advertising is a key part of many businesses’ revenue stream
online. We won’t get into a debate here about advertising-based revenue versus
the pay-for-content model; that’s a discussion that gets ugly quickly. The reality
of the matter is that for many businesses, ad revenue is essential.

Figure 4.9 On large
screens (right) the
video is embedded
but small screens
will see a link to the
video instead.

impLementing responsive design122

From a purely technical standpoint, advertising in a responsive layout isn’t
that difficult to implement. You could use JavaScript to conditionally load an
ad unit based on the screen size. Rob Flaherty, a developer in New York City,
demonstrated a basic method:6

1.	 // Ad config

2.	 var ads = {

3.	 	 leaderboard: {

4.	 	 	 width: 728,

5.	 	 	 height: 90,

6.	 	 	 breakpoint: false,

7.	 	 	 url: ‘728x90.png’

8.	 	 },

9.	 	 rectangle: {

10.	 	 	 width: 300,

11.	 	 	 height: 250,

12.	 	 	 breakpoint: 728,

13.	 	 	 url: ‘300x250.png’

14.	 	 },

15.	 	 mobile: {

16.	 	 	 width: 300,

17.	 	 	 height: 50,

18.	 	 	 breakpoint: 500 ,

19.	 	 	 url: ‘300x50.png’

20.	 	 }

21.	 };

This configuration sets up three different ads (leaderboard, rectangle, and
mobile). Each ad has a width (lines 4, 10, and 16), height (lines 5, 11, and
17), URL (lines 7, 13, and 19), and breakpoint at which point the ad should
load (lines 6, 12, and 18). You could use the matchMedia function to determine
which ad should be loaded based on the breakpoint.

Even better, the ad itself could be responsive. It could consist of HTML and
CSS that allow it to adjust to different screen sizes. Going this route would
eliminate the JavaScript dependency and potentially allow the ad to do some
cool things by playing on its interactive nature.

6 “Responsive Ad Demos” at www.ravelrumba.com/blog/responsive-ad-demos/

Chapter 4 • responsive Media 123

www.ravelrumba.com/blog/responsive-ad-demos/

From a technical perspective, neither of these options is particularly difficult.
The problem is that creating and displaying an ad has a lot of moving parts.

Most ads are served by third-party networks or the creative pieces are devel-
oped externally and then submitted according to the specifications of the site.
At the moment, no major ad-serving networks accommodate varying ad sizes
based on screen size.

Using an internal ad serving platform is a bit more flexible, but if the creative
is developed outside your company, then you’ll need to be willing to do some
education. The people creating the ad materials may not be up to speed on
what’s going on.

More importantly, ads are currently sold much like they are in print: You pay
based on the size and placement of the ad. So how exactly do you do that when
the size and placement vary?

One solution is to sell ad groups instead of ads. For example, instead of selling
a skyscraper ad, you sell a Premier Group ad (or whatever you want to call it).
The Premier Group may consist of a skyscraper for screens above 900px wide,
a boom box for screens above 600px but below 900px, and a small banner for
screen sizes below that point.

Obviously, this won’t be an easy transition. Creative teams, decision makers,
and the salesforce all need to be educated on why this approach makes more
sense than buying a defined ad space. It won’t be an easy sell, but with time it
should get easier.

The other consideration here is that some companies may want to target only
a single form factor. Perhaps their service is something specific to mobile
devices, and they decide they’d only like to serve their ads to those smaller
screens. That of course throws a little wrinkle into the ad groups, as things start
to get broken up.

Ultimately, I’d like to see the discussion of responsive advertising lead to fewer
ad spots and a higher cost per ad. Sites whose revenues are ad-based frequently
overload their pages with a plethora of ads. This makes the situation more dif-
ficult when trying to handle the small-screen experience. Do you hide all those
ads, thereby limiting page views for your advertisers, or do you cram them all
in there and ruin the experience for your visitors?

Instead of loading up pages with more and more ads, reduce the amount of
ads on a page. Instead of ten ad slots at $1,000 per month, offer three at $4,000

impLementing responsive design124

each. Make the ad spaces something worth coveting. It benefits advertisers be-
cause they have fewer ads competing for attention, and it benefits users because
they are greeted with a much better experience.

Unfortunately there’s a chicken and the egg problem: advertising rates are cur-
rently a race to the bottom. Ads struggle to get quality click-through rates so
the way to compete is to see how far you can lower the cost of entry. Someone
has to be bold enough to make that first step.

Wrapping it up
Performance is an important consideration for any site. Loading images that are
unnecessary or larger than needed can have a serious impact on page load time.

The CSS solution of display:none is not viable. It hides images from view, but
they’re still requested and downloaded. If you want images to show only above
a certain breakpoint, the better bet is to load them conditionally, after the page
load has occurred.

Responsive images are an unsolved problem. There have been many attempts
at a solution but each has its own set of problems. The best thing you can do
is take time before each project to consider which approach will work best
for that site.

To hide background images without having to download them, include the
image in a media query. Setting it in your base styles and then trying to hide
it results in the image being downloaded in the majority of cases.

High-resolution displays, such as the Retina display on latest versions of the
iPhone, iPad, and MacBook Pro, pose another challenge. There is a solution for
CSS-based images, which can use the min-resolution media query.

Video and advertising are also concerns. For video, using the intrinsic ratio
method can help you to scale the video appropriately across screen sizes. As
always, be conscious of the performance. It may be best for users to simply link
to the video on small screens and embed on larger ones.

For advertising, the technical challenges are not difficult to solve. If you’re load-
ing ads from your own system, JavaScript or some responsive HTML and CSS
can help the ads change for different resolutions. The bigger problem arises in
getting sales teams and third-party advertising networks to get on board.

Chapter 4 • responsive Media 125

This page intentionally left blank

ImplementIng ResponsIve DesIgn260

index

A
accessibility issues, 141
Adaptation, CSS (Cascading Style Sheets)

CSS Device Adaptation specification, 63
CSS Grid Layout specification, 49
device pixels versus CSS pixels, 58–59
Flexbox specification, 49
frameworks, 20, 37
LESS preprocessors, 33
rendering engines, 59
SASS preprocessors, 33

Adaptive Images script, 107–108, 110
Adaptive Web Design: Crafting Rich Experiences with

Progressive Enhancement, 15–16
Adobe Shadow, 151
advertising and fixed assets, 122–125
Affero General Public License v3 (AGPL), 213
AGPL (Affero General Public License v3), 213
all media type, 66
Allsopp, John, 22
Amazon Kindle. See Kindle (Amazon)
analytics in planning, 133–134

audits
page-by-page, 140
page tables, 143–144
templates, 142

base market shares, 138–139
demographic surveys, 138
implications for design, 135
metrics of importance, 135, 138–139
mobile web metrics, 138
server-side code, 135
skewed results, JavaScript, 134–135

anchorInclude function, 187, 189–190
and media query keyword, 67
Android. See Google/Android/Chrome
appendAround script, 193
Apple. See also iOS and Safari

Internet-enabled TVs, 6, 256
MacBook Pro, high-resolution displays, 115
Macintoshes, display sizes, 6
mouse, introduction of, 7
touch-enabled screens, 223

aside element, 39
aspect-ratio media query feature, 68
Audi, Internet connections, 256

audits in planning
page-by-page, 140
page tables, 143–144
templates, 142

B
background images, 111–113
Barebones, 175–176
Barnes & Noble Nook, e-book domination, 6
Battery Status API, 253
BBC, iPlayer, 141
BBC News, 136–137
“Beyond Layout,” 242–243
BlackBerry

analytics
Google Analytics results, 134
skewed market share statistics, 139

default font sizes, 32
input methods, 149
media queries, 74–75
web fonts, 113

Bootstrap (Twitter) style guide, 174
Boston Globe’s “My Saved” feature, 239
Boulton, Mark

“A Responsive Experience,” 229
Designing Grid Systems video series, 36

Bowles, Cennydd, “What bugs me about
‘content-out’”, 181

box-sizing element, 42
braille media type, 66
breakpoints

converting from pixels to ems, 85–86
creating, 78–79
definition, 27
design approaches

enhancing for larger screens, 83–84
following content, 79–82

Bringhurst, Robert, The Elements of Typographic
Style, 26

Bringing Design to Software, 171
Brown, Dan, Communicating Design, 154
browsers

device variations, 6–8
mock-ups for design, 170–171
proliferation of, 3–6

261InDex

C
Calendar API, 253
<canvas> element, HTML5, 250
CDNs (Content Delivery Networks), 110
Champeon, Steven, progressive enhancement

concept, 14
“Choosing a Target Device OS,” 75
Chrome. See Google/Android/Chrome
Clark, Josh, “Josh Clark debunks the 7 Myths of

Mobile Web Design,” 164
cloud service, WURFL (Wireless Universal

Resource FiLe), 213
CMSs (content management systems)

COPE (Create Once Publish Everywhere), 196
flaws, 17
maintaining/updating content, 194
WYSIWYG (What You See Is What You Get)

editors, flaws of, 17, 194–196
Colborne, Giles, Simple and Usable Web, Mobile, and

Interaction Design, 163, 236
collaboration in design workflow, 155–158
color-index media query feature, 68
color media query feature, 68
“The Coming Zombie Apocalypse,” 10, 257
comments, conditional, 47
Communicating Design, 154
“Comparing the June 15, 2012 and June 15, 2011

runs,” 20
Compass API for iPhone, 249
Complete.com website, 234
“A ‘Comprehensive’ Guide to Mobile Statistics,” 138
conditional comments, 47
Contacts API, 253
content

CDNs (Content Delivery Networks), 110
CMSs (content management systems), 17
content modeling, 183–184
content reference wireframes, 165
enhancing content

anchorInclude function, 187, 189–190
Reqwest module, 187
teaser paragraphs, 186, 190
through truncation, 190

hiding content
images, 100–101
View Desktop links, 184–186
View Full Site links, 184, 186

hierarchy of, 182
breakpoints following content, 79–82

order of, 191–192
Flexible Box Layout Module (Flexbox), 192
Grid Layouts, 37–38, 192–193

planning
accessibility issues, 141
audits, 140–144
“Content First” concept, 180–181
content simultaneously, 180–181
reordering, 130
structure and hierarchy, 139–140

removing content
images, 100–101
View Desktop links, 184–186
View Full Site links, 184, 186

truncating content, 190
types of, 181–182
WYSIWYG (What You See Is What You Get)

editors
flaws of, 17
text display issues, 192
updating content, 194–196

Content Delivery Networks (CDNs), 110
content management systems. See CMSs
Content Strategy for the Web, 144
“Contextual Web,” 237
cookies, reading and writing, 218–220
COPE (Create Once Publish Everywhere), 196
“Creating Intrinsic Ratios for Video,” 119
CSS (Cascading Style Sheets)

capabilities, 17

D
“A Dao of Web Design,” 22
“Data Monday: Login & Passwords,” 242
DDR (device detection repositories)

definition, 203
DeviceAnywhere, 152
DeviceAtlas device database, 203
WURFL, 213–226

demographic surveys, 138
descendant selectors, 31
Designing Grid Systems video series, 36
desktop down design. See also mobile first design

mobile queries, 74–76
problems, 131

Detector library, 207
device-agnostic Web design, 13
DeviceAnywhere, 152
device-aspect-ratio media query feature, 68
DeviceAtlas, 215

DDR (device detection repositories), 203
versus WURFL, 215

device detection, 203
DDR (device detection repositories), 203
DeviceAtlas, 215
WURFL, 216–218

ImplementIng ResponsIve DesIgn262

device detection repositories. See DDRs
“Device Experiences & Responsive Design,” 230
device-height media query feature, 68
device-none style rule, 103
device-width media query feature, 68
display property, 46–49
display sizes

advertising, 122–125
high-resolution displays, 115–116

SVG (Scalable Vector Graphics), 115–116
variations of, 6
video, embedding, 118–122

“Doing a Content Inventory (Or, A Mind-Numbingly
Detailed Odyssey Through Your Web Site)”, 142

E
e-book readers, built-in web browsers, 6
ECMAscript, 69
eCSSential, 73
elastic layouts, 26
The Elements of Content Strategy, 144
The Elements of Typographic Style, 26
email input type, 240
embossed media type, 66
ems

media queries, 29–31
queries based on, 85–86

sizing fonts
converting breakpoints from pixels to ems,

34–36, 85–86
elastic layouts, 26

Enros, Madhava, 145
Everyware: The Dawning Age of Ubiquitous

Computing, 238
example articles

“Beyond Layout,” 242–243
“Performance Implications of Responsive

Design,” 102–103
“Responsive Design and Accessibility,” 141
“RESS in the Wild,” 210–211
“Selling Responsive Design,” 159
“Small Phone, Big Expectations,” 136–137
“Vertical Media Queries,” 70–71

F
feature detection, 218–220. See also device

detection; user agent detection
basics, 204
combining with user agent detection, 207–208

Detector, 207
Modernizr, 204–206
modernizr-server library, 205–206
pros and cons, 206

Filament Group
appendAround script, 193
iOS-Orientationchange-Fix, 61

Finck, Nick
“Contextual Web,” 237
progressive enhancement concept, 14

Firefox (Mozilla)
download increase with lower page load time, 98
Enros’ constellation of devices concept, 145
matchMedia method, 104
multi-column layouts, 83
pixel- versus em-based media queries, 85
prefixed syntax, 42
rem units, 33
testing websites, 150
Web Sockets, 258

“Firefox & Page Load Speed–Part II,” 98
Firtman, Maximiliano, “Mobile Emulators &

Simulators: The Ultimate Guide,” 150
FitVids plug-in, 119
fixed-width layouts

basics, 23–25
mixing with fluid, 44–50

Flaherty, Rob, “Responsive Ad Demos,” 123
Flash (Adobe), Google Analytics, 135
Flexible Box Layout Module (Flexbox), 192
Flexible Web Design, 23
fluid layouts

basics, 25
em measurements, 26
mixing with fixed-width, 44–50

@font-face declaration, 113–114
font sizing

default font sizes, 32
ems, 29–31

elastic layouts, 26
percentages, 31

fluid layouts, 25
pixels, 28–29

16px default, 32
converting to ems, 34–36, 85–86
device versus CSS, 58–59
fixed-width layouts, 23–25
and zooming, 28–29

rems (root ems), 32–33
responsive design, best method, 33

Ford Motor Company, Internet connections, 256
form factors, 2

263InDex

Foursquare, 130
frameworks

cautions in using, 20
12-column grids, 37

Frost, Brad
responsive navigation approaches, list of, 88
“Selling Responsive Design,” 159
“Support vs. Optimization,” 145

Future Friendly manifesto, 14

G
gaming devices, built-in web browsers, 6
Geolocation API, 244–248
Gibson, Alex, Tap.js plug-in, 225
Gillenwater, Zoe Mickley, 25

Flexible Web Design, 23
GitHub

appendAround script, 193
Barebones, 175
FitVids, 119
grid template repository, 40
matchMedia polyfill, 104
modernizr-server library, 205–206
orientation change fix, 61
Reqwest module, 187
responsive image methods, 110
Tap.js plug-in, 225

“Global mobile statistics 2012: all quality mobile
marketing research, mobile Web stats,
subscribers, ad, revenue, usage, trends…”, 161

Google Analytics, 134–135
Google/Android/Chrome

browsing on mobile phones, 234
demand driving diversity and cost, 10
Google Analytics, 134–135
Internet-enabled TVs, 6
matchMedia method, 104
media queries, 75

background images, 112
Network Information API, 232–233
prefixed syntax, 42
rem units, 33
RESS (Responsive Design and Server-Side), 209
Scalable Vector Graphics (SVG), 115
testing websites, 150

Adobe Shadow, 151
design, 169
performance, 102–103

web fonts, 113–114
Web Sockets, 258
WURFL or JavaScript, 218

graceful degradation versus progressive
enhancement, 14, 16

Greenfield, Adam, Everyware: The Dawning Age of
Ubiquitous Computing, 238

“Grey Box Methodology,” 167
Grid Layouts, 37–38, 192–193
grid layouts

benefits of, 36–37
content-out, content defining grids, 37–38
setting grids, 38–44

grid media query feature, 68
Grigsby, Jason

“A ‘Comprehensive’ Guide to Mobile Statistics,”
138

image downloading time, 110
“segmentation is part of advertising,” 110

“GSMA Announces That the Proliferation of
Connected Devices Will Create a US$1.2
Trillion Revenue Opportunity for Mobile
Operators by 2020,” 161

Gustafson, Aaron, Adaptive Web Design: Crafting
Rich Experiences with Progressive Enhancement,
15–16

H
Halvorson, Kristina, Content Strategy for the Web, 144
handheld media type, 66
Hay, Stephen, “content reference wireframes,” 165
Headscape.co.uk, 70
height media query feature, 68, 71
height viewport meta tag property, 61
hover media query feature, 69
HTML5 for Web Designers, 39
HTML Media Capture API, 253
hybrid layouts, 26–27

I
IAB (Interactive Advertising Bureau’s) standard ad

sizes, 23, 38
iFrame, 118–119
images and responsive design

Adaptive Images script, 107–108, 110
background images, 111–113
hiding from mobile devices, 102–103
high-resolution displays, 115–116

SVG (Scalable Vector Graphics), 115–116
Mobitest measurement tool, 103
network element, 231–232
progressive enhancement, 14, 16
responsive image method polyfill, 110

ImplementIng ResponsIve DesIgn264

images and responsive design (continued)
selectively serving images 99–105
sizing with CSS, 43
strategies, 105–106

Adaptive Images, 107–108, 110
Sencha.io Src, 106–107

variations of display sizes, 6
weight of, 97–99

img element, src attribute ???, 135
implementingresponsivedesign.com website, 19
“Inclusive Web Design for the Future,” 15
initial-scale viewport meta tag property, 62
Instapaper service, 257
Interactive Advertising Bureau’s (IAB) standard ad

sizes, 23, 38
Internet-enabled TVs, 6, 256
Internet Explorer (Microsoft)

conditional comments, 47, 50
CSS Device Adaptation specification, 63
measurements

em units, 31
rem units, 33

media queries, 92–93
multi-column layouts, 83
navigation items, 91
prefixed syntax, 42
Scalable Vector Graphics (SVG), 115
standards, support of, 7
testing websites, 150, 169
user agent detection, 201
Web Sockets, 258

“Inventing on Principle,” 172
iOS. See also Apple

email input type, 240–241
iPad

high-resolution displays, 115
leading tablets, 5

iPhone
browsing on mobile phones, 234
default font sizes, 32
device versus CSS pixels, 58
display sizes, 6
emergence of smartphones, 5
high-resolution displays, 115
web fonts, 113

Network Information API, 233
orientation bug fix, 61
rem units, 33
RESS (Responsive Design and Server-Side), 209
testing with Adobe Shadow, 151
webkitCompassAccuracy and webkitCompassHeading

properties, 249
Web Sockets, 258

iPad (Apple)
high-resolution displays, 115
leading tablets, 5

iPhone (Apple)
browsing on mobile phones, 234
default font sizes, 32
device versus CSS pixels, 58
display sizes, 6
emergence of smartphones, 5
high-resolution displays, 115
web fonts, 113

Irish, Paul, 104

J
JavaScript, 36–39, 100–101

cautions in using, 20
skewed analytics results, 134–135

JavaScript Object Notation (JSON), 204
Jehl, Scott

anchor-include jQuery pattern, 187
appendAround script, 193
eCSSential, 73
iOS-Orientationchange-Fix, 61

Jenson, Scott, “The Coming Zombie Apocalypse,”
10, 257

“Josh Clark debunks the 7 Myths of Mobile Web
Design,” 164

jQuery
anchorInclude function, 187, 189–190
anchor-include pattern, 187
FitVids plug-in, 119

jsdo.it Controller, 258
JSON (JavaScript Object Notation), 204

K
Kapor, Mitchell, 171
Keith, Jeremy

HTML5 for Web Designers, 39
“Windows mobile media queries,” 49

keyboards, input methods, 7
keywords, media queries

and, 67
not, 67
only, 72
or, 72

Kindle (Amazon)
cross-device usage, 145–146
data-only cellular connections, 222
default font sizes, 32
e-book domination, 6

265InDex

media queries, 74
ems versus pixels, 85

support of standards, 7
Kirby, Mark, “The Mobile context,” 236
Kissane, Erin, The Elements of Content Strategy, 144
Koblentz, Thierry, “intrinsic rations,” 119
Koch, Peter-Paul, functions to read and write

cookies, 218

L
layout types, 27

elastic, 26
fixed-width, 23–25

mixing with fluid, 44–50
fluid, 25–26
hybrid, 26–27
responsive design, best method, 27

A List Apart, 22
Lloyd, Paul Robert, Barebones, 175
Lovinger, Rachel, “Nimble Report,” 195

M
MacBook Pro, high-resolution displays, 115
Macintoshes, display sizes, 6
Managing Enterprise Content: A Unified Content

Strategy, 184
Manson, Robbie, 40
Marcotte, Ethan, 17

“responsive architecture,” 228–229
Responsive Web Design, 156, 228
“Responsive Web Design,” 11–13

market shares, analytics, 138–139
Maslen, Tom, “Small Phone, Big Expectations,”

136–137
matchMedia() method, 104–105
maximum-scale viewport meta tag property, 61
max-width declaration, 44
McLuhan, Marshall, rear-view mirror theory,

171–172
mdot sites, 103
Media Capture API, 248, 250–252
media queries

based on ems, 85–86
breakpoints

converting from pixels to ems, 85–86
design, enhancing for larger screens, 83–84
design, following content, 79–82

CSS rules, 72
definition, 27
embedded versus external, 73–74

ems
converting breakpoints from pixels to ems,

85–86
queries based on, 85–86

features to test against, 67–69
logical keywords

and, 67
not, 67
only, 72
or, 72

matchMedia() method, 104–105
media expressions, 67
mediaQuery bookmarklet, 79
media types, 65–66
navigation

options, 88
toggling menus, 88–91, 104–105

order implementation, desktop down, 74–76,
131

structure, 65
vertical media queries project, 70–71

mediaQuery bookmarklet, 79
mental models, 3
Mercedes-Benz, Internet connections, 256
Merritt, Ed, “Vertical Media Queries,” 70–71
Messaging API, 253
Microsoft. See also Internet Explorer

OmniTouch, 11
Windows 8 logins, 243
Windows Live Sign in, 242
Windows Phone 7

condidtinal comments, 49
media queries, 74

Xbox 360, built-in browser, 6
minimum-scale viewport meta tag property, 63
min-resolution media query, 115–116
“The Mobile context,” 236
mobile devices

device-agnostic Web design, 13
early models, difficulties of, 4–5
increase of traffic, 5
proliferation of, 4, 161–162

increased by affordability, 10
increased by designs, 11

smartphones, 161–162
affordability, 10–11
emergence of, led by iPhone, 5

tablets
emergence of, led by iPad, 5
projected sales by 2015, 5

web metrics, 138
WML (Wireless Markup Language), 4

ImplementIng ResponsIve DesIgn266

“Mobile Devices Drive More Than Half of Traffic to
Twitter and Pandora,” 5

“Mobile Emulators & Simulators: The Ultimate
Guide,” 150

“Mobile First,” 160, 242
mobile first design. See also desktop down design

basics, 160–164
media queries, order implementation, 75–76,

103, 132
selectively serving images 99–105

“The Mobile Movement,” 235
“Mobile Shopping Framework: The role of mobile

devices in the shopping process,” 145
“Mobile Sites vs. Full Site,” 136
Mobile Web Best Practices, 159
Mobitest measurement tool, 103
mock-ups

basics, 168–169
designing in browsers, 170–171
static, 169–170, 173
tools, 172–173

Modernizr
downloading, 204
pros and cons, 206
using, 204–206

modernizr-server library, 205–206
Moll, Cameron, “Optimal width for 1024px

resolution?”, 23
monochrome media query feature, 68
mouse, input methods, 7
mouse, introduction of, 7
Mozilla Firefox

download increase with lower page load time, 98
Enros’ constellation of devices concept, 145
matchMedia method, 104
multi-column layouts, 83
pixel- versus em-based media queries, 85
prefixed syntax, 42
rem units, 33
testing websites, 150
Web Sockets, 258

multi-column layouts, 83–84
“My Saved” feature, Boston Globe, 239

N
National Public Radio (NPR), COPE (Create Once

Publish Everywhere), 196
NetFront browser

media queries, 74
standards support, 7

Netscape, agent detection, 201

Network Information API, 232–233
Nielsen, Jakob, “Mobile Sites vs. Full Site,” 136
“Nimble Report,” 195
Nintendo Wii, built-in browser, 6
Nook (Barnes & Noble), e-book domination, 6
not media query keyword, 67
NPR (National Public Radio), COPE (Create Once

Publish Everywhere), 196
number input type, 240

O
Olsen, Dave, Detector library, 207
OmniTouch (Microsoft), 11
“On a small screen, user experience is everything,” 145
only media query keyword, 72
Opera/Opera Mobile/Opera Mini

device versus CSS pixels, 58
multi-column layouts, 83
pixel- versus em-based media queries, 85
rem units, 33
RESS (Responsive Design and Server-Side),

209, 212
testing websites, 150
video and Take Picture feature, 252
Web Sockets, 258
WURFL, 217

“Optimal width for 1024px resolution?”, 23
Ordering Disorder: Grid Principles for Web Design,

36–37
orientation media query feature, 68
or media query keyword, 72

P
page-by-page audits, 140
page tables in audits, 143–144
Pearce, James

Compass API for iPhone, 249
modernizr-server library, 205–206
Sencha.io Src service, 106

percentages, sizing fonts, 25, 31
PerfectoMobile, 152
“Performance Implications of Responsive Design,”

102–103
phone calls from websites, 221–223
<picture> and @srcset conflict, 110
pixels

density of, 115–116
sizing fonts, 28–29

16px default, 32
converting to ems, 34–36, 85–86

267InDex

device versus CSS, 58–59
fixed-width layouts, 23–25
and zooming, 28–29

planning responsive design
advertising considerations, 132
analytics, 133–134

implications for design, 135
metrics of importance, 135, 138–139
server-side code, 135
skewed results, JavaScript, 134–135

conscious choice, 128
content, 140–144

reordering, 130
structure and hierarchy, 139–140

context considerations, 130, 136–137
devices and platforms, 144–145

browser support, 131–132
cross-device usage, 145–147
performance, 129, 136–137
testing, 147
testing, on actual devices, 148–150
testing, on emulators, 150
testing, with third-part services, 152

time requirement, 130–131
platforms, proliferation of, 3–6
“Platform Versions,” 75
plug-ins, cautions in using, 20
Podjarny, Guy, “Performance Implications of

Responsive Design,” 102–103
pointer media query feature, 69
polyfills

definition, 104
matchMedia, 104
responsive image methods, 110

print media type, 66
Professional JavaScript for Web Developers, 91
progressive enhancement versus graceful

degradation, 15–16
projection media type, 66

R
Readability service, 257
rear-view mirror theory, 171–172
rems (root ems), 32–33
rendering engines, 59
Reqwest module, 187–189
resolution media query feature, 68
responsible design workflow

collaborative/hybrid approach, 155–158
communication with clients, 157–159, 181
cross-device consistency, 160

desktop down design
mobile queries, 74–76
problems, 131

interactive medium emphasis, 155
iterations, 157
mobile first design

basics, 160–164
media queries, order implementation,

75–76, 103, 132
selectively serving images 99–105

tools
mock-ups, 168–173
style guides, 173–177
wireframes, 165–168

“Responsive Ad Demos,” 123
“responsive architecture” concept, 228–229
“A Responsive Experience,” 229
responsive content. See also content

CDNs (Content Delivery Networks), 110
CMSs (content management systems), 17
content modeling, 183–184
content reference wireframes, 165
enhancing content

anchorInclude function, 187, 189–190
Reqwest module, 187
teaser paragraphs, 186, 190
through truncation, 190

hiding content
images, 100–101
View Desktop links, 184–186
View Full Site links, 184, 186

hierarchy of, 182
breakpoints following content, 79–82

order of, 191–192
Flexible Box Layout Module (Flexbox), 192
Grid Layouts, 37–38, 192–193

removing content
images, 100–101
View Desktop links, 184–186
View Full Site links, 184, 186

truncating content, 190
types of, 181–182

responsive design
actuators, 229
complexity of, 16–17
desktop down design, 74–76
example of, 11–13
future friendly concept, 14
future of, 256–258
goals, 16–17
sensors, 229
systems, 229

ImplementIng ResponsIve DesIgn268

“Responsive Design and Accessibility,” 141
Responsive Design and Server-Side (RESS)

components
combining responsive design and server side

detection, 208
limitations, 209, 212
need for RESS, 200

responsive design planning
advertising considerations, 132
analytics, 133–134

implications for design, 135
metrics of importance, 135, 138–139
server-side code, 135
skewed results, JavaScript, 134–135

conscious choice, 128
content

accessibility issues, 141
audits, 140–144
reordering, 130
structure and hierarchy, 139–140

context considerations, 130, 136–137
devices and platforms, 144–145

browser support, 131–132
cross-device usage, 145–147
performance, 129, 136–137
testing, 147
testing, on actual devices, 148–150
testing, on emulators, 150
testing, with third-part services, 152

time requirement, 130–131
responsive experiences

APIs, 241, 253
Compass, 249
Geolocation, 244–248
Media Capture, 248, 250–252
Network Information, 232–233

capabilities, HTML5 input types, 238, 240–241
context element, 234–236

clarification, 236–237
observation and research, 237–238

network element, 230–231
Network Information API, 232–233
test loading images, 231–232

“responsive architecture” concept, 228–229
“Responsive Nav-Patterns,” 88
Responsive Web Design, 156
“Responsive Web Design,” 11–13
RESS (Responsive Design and Server-Side)

components
combining responsive design and server side

detection, 208
limitations, 209, 212
need for RESS, 200

“RESS in the Wild,” 210–211
R/GA, 145
Rieger, Stephanie, “Strategies for choosing testing

devices,” 148–149
Rockley, Ann, Managing Enterprise Content:

A Unified Content Strategy, 184
Royal Observatory of Greenwich, 116
Runyon, Erik, “RESS in the Wild,” 210–211

S
Safari (Apple)

matchMedia method, 104
rem units, 33
testing websites, 150
Web Sockets, 258

Samsung Acclaim
feature agent detection, 207–208
user agent detection, 202–203

Santa Maria, Jason, “Grey Box Methodology,” 167
Scalable Vector Graphics (SVG), 115–116
scan media query feature, 68
screen media type, 66
script media query feature, 69
“Selling Responsive Design,” 159
Sencha.io Src service, 106–107
Sensor API, 253
“Shopzilla Site Redesign–We get what we measure,” 97
“The Significance of Mobile Web in Africa and its

Future,” 161
Simple and Usable Web, Mobile, and Interaction

Design, 163, 236
Site-Seeing: A Visual Approach to Web Usability, 242
sizing fonts. See font sizing
“Small Phone, Big Expectations,” 136–137
“Smartphone market drives 600% growth in mobile

web usage,” 5
“Smartphone Owners: A Ready and Willing

Audience,” 234
“Smartphone sales pass PC sales for the first time in

history!”, 4
SMS messaging, 242–243
Sony Ericsson LiveView, 10
SourceForge website, 213
speech media type, 66
Starbucks style guide, 174
“Strategies for choosing testing devices,” 148
style guides, 173–177
“Support vs. Optimization,” 145
SVG (Scalable Vector Graphics), 115–116
Swan, Henny, “Responsive Design and Accessibility,”

141

269InDex

T
table-related values, HTML versus CSS, 46–48
“Tablet Market May Surge to $49 Billion,” 5
Tap.js plug-in, 225
teaser paragraphs, 186, 190
tel input type, 240–241
templates, audits, 142
TenByTwenty.com, 70
testing on devices and platforms, 147

on actual devices, 148–150
on emulators, 150
with third-part services, 152

“Toffee-Nosed,” 13
tty media type, 66
tv media type, 66
Twitter Bootstrap style guide, 174

U
ua-parser.php script, 207
Ubuntu, 218
url input type, 240–241
user agent detection. See also device detection;

feature detection
basics, 201–202
combining with feature detection, 207–208
Detector, 207
pros and cons, 203
user agent strings, 202–203
using, 203

user agent (UA) strings, 17
user-scalable viewport meta tag property, 61–62

V
Veen, Jeffrey, “Doing a Content Inventory (Or, A

Mind-Numbingly Detailed Odyssey Through
Your Web Site)”, 142

“Vertical Media Queries,” 70–71
Vibration API, 253
Victor, Bret, “Inventing on Principle,” 172
video

Designing Grid Systems series, 36
embedding, 118–122
Take Picture feature, 252

View Desktop links, 184–186
View Full Site links, 184, 186
viewports

CSS Device Adaptation specification, 63
definition, 27
pixels, device versus CSS, 58–59

rendering engines, 59
viewport meta tag properties

height, 61
initial-scale, 62
maximum-scale, 61
minimum-scale, 63
user-scalable, 61–62
width, 60

Vimeo videos, 118, 121
Vinh, Khoi, Ordering Disorder: Grid Principles for

Web Design, 36

W
W3C, “Web applications: discovering and binding to

services,” 257
WAI-ARIA (Web Accessibility Initiative-Accessible

Rich Internet Applications), 141
Web

flexibility and unpredictability, 22
future friendly, 14
unstable environment, 2

“Web applications: discovering and binding to
services,” 257

web fonts, 113–114
Web Form Design, 242
Web Intents API, 253
WebKit-based browsers

device versus CSS pixels, 58
high-resolution displays, 115
multi-column layouts, 83
Network Information API, 232
rendering engines, 59
web fonts, 113–114
web queries, 131

webkitCompassAccuracy property, 249
webkitCompassHeading property, 249
WebPageTest measurement tool, 102–103
Web Sockets, 258
WeedGarden.net blog, 210
“What bugs me about ‘content-out’”, 181
“What Users Want from Mobile,” 98
What You See Is What You Get (WYSIWYG) editors

flaws of, 17, 194–196
maintaining/updating content, 194–196
text display issues, 192

width media query feature, 68, 71
width viewport meta tag property, 60
Wii (Nintendo), built-in browser, 6
Wilcox, Matt, Adaptive Images script, 107
Windows 8 (Microsoft) logins, 243
Windows Live Sign in (Microsoft), 242

ImplementIng ResponsIve DesIgn270

“Windows mobile media queries,” 49
Windows Phone 7 (Microsoft)

conditional comments, 49
media queries, 74

Winograd, Terry, Bringing Design to Software, 171
wireframes, 165–168
Wireless Markup Language (WML), 4
Wireless Telephony Applications Interface (WTAI),

221
Wireless Universal Resource FiLe. See WURFL
WML (Wireless Markup Language), 4
workflow of responsible design

collaborative/hybrid approach, 155–158
communication with clients, 157–159, 181
cross-device consistency, 160
desktop down design

mobile queries, 74–76
problems, 131

interactive medium emphasis, 155
iterations, 157
mobile first design

basics, 160–164
media queries, order implementation,

75–76, 103, 132
selectively serving images 99–105

tools
mock-ups, 168–173
style guides, 173–177
wireframes, 165–168

“The World in 2011: ICT Facts and Figures,” 4
Wroblewski, Luke

“Beyond Layout,” 242–243
“Data Monday: Login & Passwords,” 242
“Device Experiences & Responsive Design,” 230
“Mobile First,” 160, 242
RESS (Responsive Design and Server-Side)

components, 200
Site-Seeing: A Visual Approach to Web Usability, 242
Web Form Design, 242

WTAI (Wireless Telephony Applications Interface),
221

WTF Mobile Web, 159
WURFL (Wireless Universal Resource FiLe)

configuring, 214–216
DDR (device detection repositories), 203
versus DeviceAtlas, 215
device detection, 216–218

phone calls, 221–223
touch-enabled screens, 223–226

feature detection, 218–220
installing, 213
licensing, 213

WYSIWYG (What You See Is What You Get)
editors

flaws of, 17, 194–196
maintaining/updating content, 194–196
text display issues, 192

X
Xbox 360 (Microsoft), built-in browser, 6
XML

rendering engines, 59
SVG (Scalable Vector Graphics), 115–116

XSLT, rendering engines, 59

Y
Yiibu, 116
YouTube videos, 118, 121

Z
Zakas, Nicholas, Professional JavaScript for Web

Developers, 91

	Contents
	CHAPTER 4: RESPONSIVE MEDIA
	What’s the problem?
	Performance

	Selectively serving images to mobile
	JavaScript
	Introducing matchMedia

	Responsive image strategies
	Fighting the browser
	Resignation
	Going to the server

	Responsive image options
	Sencha.io Src
	Adaptive Images
	Wait, what’s the answer here?

	Background images
	While we’re at it

	High-resolution displays
	SVG

	Other fixed-width assets
	Video
	Advertising

	Wrapping it up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

